11月30日 郭继明教授学术报告(数学与统计学院)

来源:数学行政作者:时间:2021-11-24浏览:60设置

报 告 人:郭继明 教授 

报告题目:Onthe improved Brouwer's Laplacian spectrum conjecture

报告时间:2021年11月30日(周二)下午14:30

报告地点:腾讯会议(会议ID:418 400 573)

主办单位:数学与统计学院、科学技术研究院 

报告人简介:

       郭继明, 华东理工大学理学院数学系教授, 博士生导师。主要研究方向为图论与组合数学, 在国内外专业期刊《Linear Algebra and Its Applications》、《DiscreteApplied Mathematics》、《Discrete Mathematics》、《Linear and Multilinear Algebra》、《Journal ofGraph Theory》 、《中国科学》、《Graphs and Combinatorics》等上发表论文60余篇, 被SCI收录50余篇。 

报告摘要:

       Let $G$ be a simple connected graph with $n$ vertices.The matrix $L(G)=D(G)-A(G)$ is called Laplacian matrix of $G$, where $A(G)$ isthe adjacency matrix of $G$ and $D(G)=diag(d(v_1),d(v_2),\ldots,d(v_n))$ is thediagonal matrix of vertex degrees of $G$.It is well known that $L(G)$ is apositive semidefinite and symmetric real matrix.Let $S_k(G)$ be the sum of thefirst $k$ largest Laplacian eigenvalues of $G$.It was conjectured by Brouwerthat $S_k(G)\leq e(G)+\binom{k+1}{2}$ holds for $1\leq k\leq n-1$. In thistopic,we propose the improved Brouwer's Laplacian spectrum conjecture and provethe conjecture holds for $k=2$ which

alsoconfirm the conjecture of Guan et al. in 2014.



返回原图
/